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Abstract. We analyse the validity ranges of the adiabatic and anti-adiabatic approximations for
a model with electron–electron and electron–phonon interactions for a three-site cluster. This
model describes the motion of apical oxygen atoms in YBa2Cu3O7. We show that the adiabatic
approximation still applies for critical infrared coupling where the gap between the ground state
and first excited electronic state becomes nearly equal to the double-well potential barrier. For
this high coupling value, the motion of holes and ions is already highly correlated. We arrive
at the non trivial conclusion that in this model the adiabatic approximation is valid even in a
parameter region where the electronic energy scale is not much larger than the phononic energy
scale. This approximation is able to describe polaronic effects which have been shown to appear
in the infrared absorption spectrum in previous exact numerical calculations. We also investigate
the range of validity of the anti-adiabatic approximation. We find that the window where none of
the above-mentioned approximations is valid shrinks with decreasing on-site repulsionU until
it closes atU = 0 in agreement with other work in the literature.

Results from recent EXAFS [1, 2] and Raman [3] experiments on the compound YBa2Cu3O7

have been interpreted in terms of a highly anharmonic potential for the apex oxygen
motion along thec axis, although this interpretation has been debated lately [4, 5]. On
the other hand, a model that ascribes this behaviour to strong electron–phonon interactions
has been proposed [6]. We have shown [7] (for the response to this comment see [8])
that the adiabatic approximation can account for the anharmonicity and the optical response
of the proposed model system [6]. Regardless of the physical motivations, the model
considered provides a non-trivial testing ground for the validity of adiabatic as well as anti-
adiabatic approximations in systems with both strong electron–electron and electron–phonon
interactions. The purpose of this work is to analyse the criterion for the validity of the
above-mentioned approximations and to determine the ranges where these approximations
are valid. We consider the Holstein–Hubbard model of [6] for two apex oxygen atoms O(4)
and a chain copper atom Cu(1) in YBa2Cu3O7:

H = Hel +Hph +Hel–ph (1)

where

Hel =
∑
σ

3∑
i=1

εiniσ + U
3∑
i=1

ni↑ni↓ + t
∑
σ

[(c†1σ c2σ + c†3σ c2σ )+ HC] (2)

Hph = h̄ω0
irb
†
irbir + h̄ω0

Rb
†
RbR (3)

Hel–ph = −λR(b
†
R+ bR)

∑
σ

2(n1σ − 2n2σ + n3σ )− λir(b
†
ir + bir)

∑
σ

(n3σ − n1σ ). (4)

0953-8984/97/112443+09$19.50c© 1997 IOP Publishing Ltd 2443



2444 S Koval and C J Gazza

Here, niσ = c
†
iσ ciσ denotes the number operator for holes of spinσ at site i; i = 1, 3

indicates the lower and upper O(4) sites, andi = 2 the Cu(1) site, with site energiesεi
(ε1 = ε3 6= ε2), hopping amplitudet and on-site repulsionU . The ionic charges are taken
to be−2 for oxygen atoms and+1 for the copper atom, and there are two holes added
to the cluster. In the phonon part we include only harmonic Raman- and infrared-active
modes, with creation operatorsb†R andb†ir and frequenciesω0

R andω0
ir , respectively. These

operators are related to the Raman and infrared coordinates by

uα =
√

h̄

2mOω0
α

(b†α + bα) (5)

whereα = ir,R.
This model was exactly diagonalized by Mustre de Leonet al [6] using a Lanczos

algorithm, with a basis of 40 Raman and 40 infrared phonons and the nine states of two
holes in the three-site cluster. This corresponds to 40×40×9= 14 400 states. They used the
following values of the parameters in (1):ε1,3 = −ε2 = 0.5 eV, t = 0.5 eV,U = 7.0 eV,
ω0

R = 500 cm−1, andω0
ir = 600 cm−1. These workers found that the squared many-body

ground-state wavefunction develops a double-peak structure in the infrared coordinate for
λir ' 0.12 eV. In the Raman coordinate there is only a single-peak shift from the bare
equilibrium positionuR = 0 asλR increases, but no double-well structure develops even
for λR = 0.2 eV. In addition, they computed the absorption spectrum and obtained peculiar
features that were ascribed to non-adiabatic effects.

It is unusual to have exact solutions of physically interesting electron–phonon models
where approximate treatments can be checked. Taking advantage of the existence of exact
results for (1), we reinvestigate this model for the purpose that we have already mentioned.

In the adiabatic approximation the phononic coordinates are treated classically, and the
electronic ground state is computed exactly in terms of these quantities. The corresponding
ground-state energyE0(uir, uR) is later used as the potential function in a Schrödinger
equation for the ionic dynamics. To solve this equation we use a basis of 15 Hermite
polynomials for each coordinate. On the other hand, in the anti-adiabatic approximation,
for arbitrarily fixed electronic configuration we first determine the equilibrium phonon
coordinates and its corresponding total (phononic plus electronic) energy. Then we construct
a 9× 9 matrix containing these energies in the diagonal and the hopping energies as off-
diagonal elements. The diagonalization of this matrix produces finally the groundstate and
first excited state of the cluster.

The criterion used in the literature for the validity of the adiabatic approximation is that
the electronic excitation energies are much higher than the phonon energies [9–11]. We
shall see in the following that, even when this criterion is not satisfied for the parameters
used in the present model, the adiabatic treatment is able to reproduce the energies and
wavefunctions of the many-body states well. The validity of the wavefunctions is verified
for an integral physical property, namely the infrared absorption spectra. On the other hand,
the anti-adiabatic approximation is expected to hold as long as the electronic excitation
energies are negligible compared with the phonon energies [10]. This is satisfied at very
large electron-phonon couplings.

The result of the adiabatic calculation ofE0(uir, uR) as a function ofλir shows a double-
well structure in the infrared coordinate forλir > 0.11 eV, while in terms ofuR it presents a
single minimum whose position depends onλR (in the following, we shall always consider
the Raman couplingλR = λir for λir 6 0.10 eV, andλR = 0.10 eV forλir > 0.10 eV, as was
done in [6]). This is in fairly good quantitative agreement with the probability distribution
obtained in [6] using the exact wavefunction, which develops two peaks forλir > 0.12 eV.
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Figure 1. Energies of the first four allowed dipolar transitions from the many-body ground state
for U = 7 eV in the adiabatic approximation (- - - -), and exact results from [6] (•), together
with the energies of the dipolar transitions in the anti-adiabatic approximation for different values
of U (· · · · · ·). We also show the electronic energy difference between the first excited state and
ground state with the ions at their equilibrium positions (——), for different values ofU .

The splitting between peaks in the exact calculation reaches 0.125Å for λir ' 0.13 eV,
in agreement with the experimental value of 0.13Å from EXAFS [1]. We obtain this
separation between the two minima ofE0(uir, uR) for a slightly smallerλir ' 0.12 eV. We
wish to point out that a double-well structure in the infrared coordinate is also obtained in
a model for the chains of YBa2Cu3O7 where the electron–phonon interaction is introduced
as a modulation of the hopping integral [12]. In our calculation, the dimensionless infrared
coupling where the double well develops is approximatelyλ = 0.7 (as defined in [12]),
close to the value of 1.1 found in the above-mentioned work. It is important to note that
these values of the coupling constants are much larger than the values obtained by analysing
experimental data through strong-coupling calculations for several phonons in YBa2Cu3O7

(λ ∼ 0.01) [13, 14]. We also note that the infrared coupling neccesary for the existence of the
double-well structure in our calculation is of the order of the total electron–phonon coupling
obtained by first-principles calculations for the sum over all modes in YBa2Cu3O7 [15]. We
wish to point out that a systematic study of the validity of the adiabatic approximation is
important in that it allows the analysis of larger systems. For example, it may be useful
to give more support to some conclusions arrived at in [12]. One of them is that there
is a strong interaction between chains and basal planes in YBa2Cu3O7, a fact that should
explain structural parameter changes with doping.

We solve the Schrödinger equation for the ionic movement using the obtainedE0(uir, uR)

as the potential energy. The lowest infrared allowed transitions are shown in figure 1, where
they are compared with the exact values. As can be seen, the agreement is excellent up
to λir ' 0.16 eV . Note also that the first excited electronic level for bothU = 7 eV
and 3.5 eV lies not far above the highest vibrational level considered. As we have already
mentioned, this means that the usual criterion for the validity of the adiabatic approximation
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Figure 2. Energies of the two lowest electronic levels as a function of (a), (c), (e) the infrared
and (b), (d), (f) the Raman coordinates: (a), (b)λir = 0.10 eV; (c), (d)λir = 0.16 eV; (e), (f)
λir = 0.25 eV. The units of the infrared and Raman coordinates are angströms.

is not fulfilled; yet this approximation is still valid. Forλir > 0.16 eV, the adiabatic
approximation fails at least to reproduce the energies of one band, which corresponds to
three infrared phonons atλir = 0. This band should tend to the bare infrared frequency of
600 cm−1, as we can see for the exact results, but atλir ' 0.16 eV it begins to increase
steadily in energy. The other low-energy bands depicted are well reproduced also at very
strong couplings (λir ' 0.25 eV) where they approach constant values. Note that the energy
of the lowest band (which is the tunnelling frequency when the double well develops)
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tends to zero because of the increasingly large barrier of the double-well potential at high
couplings. The limits for the other bands are the frequencies of one Raman mode and
two Raman modes. To understand this picture, and therefore the regime of validity of the
adiabatic approximation, we plot in figure 2 the electronic energies of the ground states
and first excited states for different values ofλir . Figures 2(a), 2(c) and 2(e) show these
energies as functions ofuir , whereuR was fixed at the minimum of the ground-state energy.
Conversely, in figures 2(b), 2(d) and 2(f) we see the same energies as a function ofuR,
having setuir at one of the degenerate ground-state minima. The adiabatic approximation
works well as long as the ions oscillate around the minimum of the ground-state energy and
no transition to the first excited electronic level occurs. Forλir = 0.1 eV, we observe in
figure 2(a) and 2(b) a nearly constant energy gap between the two lowest electronic levels.
Thus the ionic motion along the infrared (figure 2(a)) or Raman (figure 2(b)) coordinates
would hardly produce an electronic transition to the higher level since this implies a higher
energy cost than the energy increase due to their oscillations around the electronic ground
state minimum. Note that this argument is valid in spite of the fact that the gap is only 2.5
times larger than the bare infrared frequency! On the other hand, we can see in figure 2(c)
for λir = 0.16 eV that, in order to jump across the barrier between the two minima of
the double-well ground-state potential, the ions have to lose an energy of the order of the
gap between the two lowest electronic levels. In consequence, there is a large chance
of an electronic transition, a fact that breaks the validity of the adiabatic approximation.
Moreover, forλir = 0.25 eV we can see in figure 2(e) that the gap between the lowest
electronic levels is much smaller than the double-well barrier. Then, the probability of an
electronic transition becomes high asλir increases beyond the critical valueλir = 0.16 eV.
This produces the deviation from the exact results of the band with infrared character for
λir > 0.16 eV (see figure 1). According to the exact results this band approaches the energy
of one infrared mode for large coupling.

In the Raman mode, the ions oscillate around a single minimum, and the gap between
the two electronic levels is considerably larger than the energies involved in the oscillatory
motion, even for large values ofλir (see figures 2(d) and 2(f)). Note that the gap in figure 2(f)
is about 0.14 eV, only 30% smaller than the corresponding value in figure 2(b)). Then, the
adiabatic approximation holds for the bands with Raman character, as is seen in figure 1
(see the bands at 500 and 1000 cm−1 from λir = 0.16 eV up to values ofλir = 0.25 eV).

Below the range of existence of the double-well structure (λir < 0.11 eV) the electronic
ground state is the antisymmetric combination of the states with both oxygen sites occupied
by holes. When the double well develops, the ground state becomes the antisymmetric
combination of states with holes at the copper and oxygen sites. At a certain large value of
the infrared coupling, the electronic ground state changes abruptly, becoming the symmetric
combination of states with both holes sitting at the oxygen site (see the nearly infinite slope
of the difference energy between the first excited state and the ground state atλir ' 0.48 eV
for U = 7 eV, one of the full lines in figure 1). This behaviour is interpreted by the fact that
the large infrared distortion favours the occupation of both holes at the same oxygen site
in spite of the on-site repulsionU . For smaller values ofU , this change in the electronic
ground state occurs at smaller values of the infrared coupling (see also the full line for
U = 3.5 eV in figure 1).

In order to check the anti-adiabatic approximation we perform calculations starting with
very large values ofλir . We obtain in this case a nearly degenerate ground state with
both holes sitting almost entirely in one of the two oxygen sites. This is in accordance
with the exact results obtained in [6], namely that at large values ofλir there is a freezing
of holes at the oxygen sites which results in harmonic oscillations with the bare infrared
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frequency around the new equilibrium positions of the ions. Asλir decreases, the two nearly
degenerate levels start to split. ForU = 7 eV their separation becomes about 10% of the
infrared mode energy forλir ' 0.48 eV. The last value is just the critical coupling where
there is an abrupt change in the electronic ground state as we have already mentioned (note
that, in figure 1, the region where the levels start to split forU = 7 eV nearly coincides with
that where the electronic energy slope tends to infinity). For smaller values of this coupling,
the holes are no longer frozen at the oxygen site and they have a non-zero probability of
jumping to the copper ion. Therefore, we consider this critical coupling (which produces the
above-mentioned level separation) as roughly the limit of validity of the approximation. For
smaller values ofU the anti-adiabatic approximation continues to be valid for smaller values
of λir, as shown in figure 1. Since in the adiabatic region the first excited electronic state
energy increases with decreasingU, this approximation also extends its range of validity.
This conclusion is also reinforced by the fact that, for smallerU , the infrared coupling
where the double well develops is larger (forU = 3.5 eV, the double well appears at
λir = 0.16 eV). Therefore, the window where none of the approximations is valid shrinks
with decreasingU . According to [10], this window closes atU = 0.

A stringent test on the validity of the adiabatic approximation is reproducing the main
features of the exact optical absorption spectrum found in [6]. We have evaluated the
imaginary part of the dielectric function

ε(ω) =
∑
j

Sjω
2
j

ω2
j − ω2− iωγ

(6)

where the oscillator strengthsSj and the dipole-moment operatorp are as follows:

Sj = |〈j |p|0〉|2 (7)

and

p = −
[

8

(
1+ 2mO

mCu

)]1/2

uir +
∑
σ

(
R0− uR√

2

)
(n3σ − n1σ )

+
∑
σ

(
1+ 2mO

mCu

)1/2
uir√

2
(n3σ + n1σ ). (8)

In this equation,R0 = 1.87 Å is the equilibrium Cu–O distance, and we take for the
full width the valueγ = 0.34 cm−1. In order to evaluateSj we used our approximated
9j(uir, uR), with j restricted to the first four allowed dipolar transitions. This is enough
to compare with the reported exact results. In the integration onuir, uR it is important
to take into account properly the dependences ofn3σ and n1σ on these variables. This
requires calculation of the electronic ground state at every integration step. The spectrum
obtained is shown in figure 3(a) forλir = 0.13 eV, together with the exact results from
[6]. The more subtle feature of the spectrum is peak B (well defined in our case) which
Mustre de Leonet al assigned to non-adiabatic effects. In our calculations it arises owing
to both the dependence of the electronic wavefunction on phononic coordinates, and the
non-separability of the effective potentialE0(uir, uR). Using a rigid double-well potential
[1, 2], peak B does not appear [6]. Peak A is centred at the tunnelling frequency between
the two minima of the double well in the infrared coordinate. We foundωA = 53 cm−1,
which should be compared with the exact value of 52 cm−1. It is worth mentioning that, for
λir = 0.15 eV near the critical infrared coupling where the adiabatic approximation begins
to fail, we haveωA = 9.5 cm−1 which is still fairly close to the exact value of 8 cm−1

[6]. In our case the peak A intensity is about six times larger than that of peak C. In the
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Figure 3. Infrared absorption spectrum in arbitrary units forU = 7 eV, λR = 0.1 eV, and
λir = 0.13 eV: ——, adiabatic approximation;- - - -, exact results for (a)λir = 0.13 eV from
[6], and (b)λir = 0.133 eV from [16].

caption to figure 2 in [6] it is mentioned that this ratio is about 10. Nevertheless, with a
small change inλir (from 0.130 to 0.127 eV) we obtained the same ratio and very small
changes in the rest of the spectrum: shifts of less than 3% in the frequencies at which peaks
B and C are centred, and a 7% of increase in peak B intensity. Conversely, our results for
λir ' 0.130 eV have even better agreement with the exact results forλir ' 0.133 eV of [16]
(see figure 3(b)). Then, for a slightly differentλir all the features of the exact spectrum are
reproduced qualitatively and, to a reasonable extent, also quantitatively. Note also that a
decrease inλir leads to an enhancement of peaks A and B, which reinforces the idea that
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Figure 4. Infrared absorption spectrum in arbitrary units forU = 7 eV, showing only peaks C
and B in the adiabatic approximation for different values ofλir .

non-adiabatic effects are not relevant to the appearance of peak B. We show in figure 4
how the intensity of peak B decreases in the adiabatic approximation, tending to zero as
λir is increased (the intensities of peak C were fixed to be all equal for all the couplings
showed, owing to the arbitrary nature of the units). This feature shows at least qualitatively
that the wavefunction of peak B tends correctly to the region where it has Raman character
and zero oscillator strength. The same occurs for the mode whose frequency tends to 2ω0

R,
but its intensity is smaller than that of peak B. We also see the correct tendency of the
frequencies for the modes C and B (the centre of the peaks) which nearly approachω0

ir
andω0

R respectively, asλir increases toλir ' 0.16 eV (see also figure 1). The intensity of
peak A atλir = 0.13 eV is ten times the value corresponding toλir = 0.14 eV, showing
also the correct qualitative tendency asλir increases. Note that we can only suggest the
above-mentioned tendencies because atλir = 0.16 eV the adiabatic approximation begins
to fail. Nevertheless, these tendencies are in accordance with the exact results, where for
large enough values ofλir the absorption spectrum converges to a single peak atω0

ir [6].
In conclusion, the adiabatic approximation is valid for the system considered in a

context where the electronic energy scale is not much larger than the phononic energy
scale. This approximation fails for an infrared coupling regime where the gap between the
ground state and first excited electronic level becomes smaller than the double-well potential
barrier. As for the low-energy infrared absorption spectrum, this failure affects only a band
which has infrared character and should approachω0

ir for largeλir . On the other hand, the
approximation reproduces the bands which tend toω0

R and 2ω0
R at largeλir . This is explained

by the fact that the gap between the ground state and first excited electronic level is larger
than the energy variations associated with the Raman mode. We have also determined the
validity range of the anti-adiabatic approximation, which holds at very large couplings where
the holes are nearly frozen at the oxygen site. The window where none of the approximations
is valid shrinks with decreasingU . The validity of the many-body wavefunction is verified
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for the infrared absorption spectrum, where we can also reproduce a peculiar feature that
arises as a small peak in the exact results. This peak is due to a mixing of the Raman
and infrared modes through the electron–phonon correlations. It is worth mentioning that
the infrared reflectivity of La2CuO4 shows a low-frequency shoulder for the peak of the
stretching mode [17]. In previous work, we conclude that this feature should be ascribed
to a polaronic excitation [18]. Photoinduced carrier experiments [19] show a bleaching for
the stretching mode that supports this interpretation. Infrared reflectivity measurements on
chemically doped samples also detect with increasing oxidation the above-mentioned low-
frequency shoulder of the stretching mode [20]. It would be interesting to analyse in future
work with an electron–phonon model and within the adiabatic approximation the possibility
of finding such a feature in the absorption spectra and therefore in the reflectivity bands.
Note that this feature may be analogous to the small peak B found, but considering the
possibility of polaron formation through the mixing of the stretching and other phononic
modes with carriers due to the strong electron–phonon interaction.

Finally, we have shown that the proper use of the adiabatic and anti-adiabatic
approximations reproduces the exact results in a model with strong electron–electron and
electron–phonon interactions, for most of the parameter range. Moreover, all the relevant
features of the physics involved are correctly described by these approximations.
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[8] Mustre de Leon J, Batistić I, Bishop A R, Conradson S D and Trugman S A 1995Phys. Rev. Lett.75 584
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